kniost

谁怕,一蓑烟雨任平生

0%

LeetCode 133. Clone Graph

133. Clone Graph

Difficulty: Medium

Given a reference of a node in a undirected graph, return a (clone) of the graph. Each node in the graph contains a val (int) and a list (List[Node]) of its neighbors.

Example:

1
2
3
4
5
6
7
8
Input:
{"$id":"1","neighbors":[{"$id":"2","neighbors":[{"$ref":"1"},{"$id":"3","neighbors":[{"$ref":"2"},{"$id":"4","neighbors":[{"$ref":"3"},{"$ref":"1"}],"val":4}],"val":3}],"val":2},{"$ref":"4"}],"val":1}

Explanation:
Node 1's value is 1, and it has two neighbors: Node 2 and 4.
Node 2's value is 2, and it has two neighbors: Node 1 and 3.
Node 3's value is 3, and it has two neighbors: Node 2 and 4.
Node 4's value is 4, and it has two neighbors: Node 1 and 3.

Note:

  1. The number of nodes will be between 1 and 100.
  2. The undirected graph is a , which means no repeated edges and no self-loops in the graph.
  3. Since the graph is undirected, if node p has node q as neighbor, then node q must have node p as neighbor too.
  4. You must return the copy of the given node as a reference to the cloned graph.

    Solution

Language: Java

一边遍历点和边,一边克隆,BFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/*
// Definition for a Node.
class Node {
public int val;
public List<Node> neighbors;

public Node() {}

public Node(int _val,List<Node> _neighbors) {
val = _val;
neighbors = _neighbors;
}
};
*/
public class Solution {
public Node cloneGraph(Node node) {
if (node == null) {
return null;
}
Map<Node, Node> map = new HashMap<>();
Queue<Node> q = new LinkedList<>();
q.offer(node);
while (!q.isEmpty()) {
Node tmp = q.poll();
if (!map.containsKey(tmp)) {
Node newNode = new Node(tmp.val, new ArrayList<>());
map.put(tmp, newNode);
}
Node newNode = map.get(tmp);
for (Node nei : tmp.neighbors) {
if (!map.containsKey(nei)) {
q.offer(nei);
Node n = new Node(nei.val, new ArrayList<>());
map.put(nei, n);
}
newNode.neighbors.add(map.get(nei));
}
}
return map.get(node);
}
}

先复制点再遍历添加边,BFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
public class Solution {
public Node cloneGraph(Node node) {
if (node == null) {
return null;
}
Map<Node, Node> map = new HashMap<>();
Queue<Node> q = new LinkedList<>();
q.offer(node);
while (!q.isEmpty()) {
Node tmp = q.poll();
if (!map.containsKey(tmp)) {
Node newNode = new Node(tmp.val, new ArrayList<>());
map.put(tmp, newNode);
}
for (Node nei : tmp.neighbors) {
if (!map.containsKey(nei)) {
q.offer(nei);
}
}
}
for (Node origin : map.keySet()) {
Node nn = map.get(origin);
for (Node neighbor : origin.neighbors) {
nn.neighbors.add(map.get(neighbor));
}
}
return map.get(node);
}
}

DFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public class Solution {
public Node cloneGraph(Node node) {
if (node == null) {
return null;
}
Map<Node, Node> map = new HashMap<>();
dfsHelper(node, map);
return map.get(node);
}

private void dfsHelper(Node node, Map<Node, Node> map) {
if (!map.containsKey(node)) {
Node newNode = new Node(node.val, new ArrayList<>());
map.put(node, newNode);
}
Node newNode = map.get(node);
for (Node neighbor : node.neighbors) {
if (!map.containsKey(neighbor)) {
dfsHelper(neighbor, map);
}
newNode.neighbors.add(map.get(neighbor));
}
}
}