kniost

谁怕,一蓑烟雨任平生

0%

LeetCode 62. Unique Paths

62. Unique Paths

Difficulty:: Medium

A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).

How many possible unique paths are there?


Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

1
2
3
4
5
6
7
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1\. Right -> Right -> Down
2\. Right -> Down -> Right
3\. Down -> Right -> Right

Example 2:

1
2
Input: m = 7, n = 3
Output: 28

Solution

Language: Java

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
Arrays.fill(dp[0], 1);
for (int i = 0; i < m; i++) {
dp[i][0] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
}

滚动数组优化

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Solution {
public int uniquePaths(int m, int n) {
if (m <= 1 || n <= 1) {
return 1;
}
int[][] dp = new int[2][n];
Arrays.fill(dp[0], 1);
dp[1][0] = 1;
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i % 2][j] = dp[(i - 1) % 2][j] + dp[i % 2][j - 1];
}
}
return dp[(m - 1) % 2][n - 1];
}
}