Difficulty:: Medium
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
1 2 3 4 5 6 7 8
| Input: [ [1,3,1], [1,5,1], [4,2,1] ] Output: 7 Explanation: Because the path 1→3→1→1→1 minimizes the sum.
|
Solution
Language: Java
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
| class Solution { public int minPathSum(int[][] grid) { if (grid == null || grid.length == 0) { return 0; } int m = grid.length; int n = grid[0].length; for (int i = 1; i < n; i++) { grid[0][i] += grid[0][i - 1]; } for (int i = 1; i < m; i++) { grid[i][0] += grid[i - 1][0]; } for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { grid[i][j] += Math.min(grid[i - 1][j], grid[i][j - 1]); } } return grid[m - 1][n - 1]; } }
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
| class Solution { public int minPathSum(int[][] grid) { if (grid == null || grid.length == 0 || grid[0].length == 0) { return 0; } int m = grid.length; int n = grid[0].length; int[][] dp = new int[2][n]; dp[0][0] = grid[0][0]; for (int i = 1; i < n; i++) { dp[0][i] = dp[0][i - 1] + grid[0][i]; } for (int i = 1; i < m; i++) { for (int j = 0; j < n; j++) { if (j == 0) { dp[i % 2][j] = dp[(i - 1) % 2][j] + grid[i][j]; } else { dp[i % 2][j] = Math.min(dp[(i - 1) % 2][j], dp[i % 2][j - 1]) + grid[i][j]; } } } return dp[(m - 1) % 2][n - 1]; } }
|