Difficulty:: Medium
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node’s key.
- The right subtree of a node contains only nodes with keys greater than the node’s key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
1 2 3 4 5
| Input: 2 / \ 1 3 Output: true
|
Example 2:
1 2 3 4 5 6 7 8
| 5 / \ 1 4 / \ 3 6 Output: false Explanation: The input is: [5,1,4,null,null,3,6]. The root node's value is 5 but its right child's value is 4.
|
Solution
Language: Java
递归法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
|
class Solution { public boolean isValidBST(TreeNode root) { if (root == null) { return true; } return validHelper(root, Long.MIN_VALUE, Long.MAX_VALUE); } private boolean validHelper(TreeNode root, long minVal, long maxVal) { if (root == null) { return true; } if (root.val >= maxVal || root.val <= minVal) { return false; } return validHelper(root.left, minVal, root.val) && validHelper(root.right, root.val, maxVal); } }
|
中序遍历法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
|
class Solution { public boolean isValidBST(TreeNode root) { if (root == null) { return true; } Deque<TreeNode> dq = new ArrayDeque<>(); long prev = Long.MIN_VALUE; TreeNode cur = root; while (!dq.isEmpty() || cur != null) { if (cur != null) { dq.push(cur); cur = cur.left; } else { cur = dq.pop(); if (cur.val <= prev) { return false; } prev = cur.val; cur = cur.right; } } return true; } }
|